AKEPOX® 5010



# **Technical Instruction Sheet**

Page 1 of 3

#### Characteristics:

AKEPOX<sup>®</sup> 5010 is a gel-like, two-component adhesive, is free of solvents, is based on epoxy resins and has a cycloaliphatic polyamine hardener. The product is characterised by the following properties:

- it has a very neutral colour
- little yellowing
- easy measuring and mixing by use of cartridge system
- because of it's gel-like consistency it has a high creep strength
- during hardening there is very little shrinkage, and therefore minimal tension within the adhesive joint
- the bonding are very weather resistant
- can be excellently coloured with AKEPOX® colour pastes
- the adhesive layer retains it's from well
- it's tendency to fatigue is slight
- it has a very high stability in contact with alkalis and is therefore very suitable for bonding with concrete
- because it is free of solvents, it is especially suitable for bonding materials which are impermeable to gas
- it is suitable for bonding load-bearing constructional elements
- it adheres well to stone even if it is slightly damp
- it is suitable for bonding materials which react in contact with solvents (e.g. polystyrene, ABS)
- after being hardened the product is harmless to health upon contact with food products certified by the "LGA Nürnberg"

### Field of Application:

AKEPOX<sup>®</sup> 5010 is mainly used in the stone-working industry for the weather-resistant bonding and glueing of natural stone (marble, granite) as well as artificial stone or building materials (terrazzo, concrete). By means of the application of high-quality raw materials it was possible to develop a system which hardly yellows. It is thus possible to use it in combination with light-coloured or even white natural stone without the usual intensive yellowing of conventional epoxyresin systems. Because of it's supple, gel-like consistency the product has a high creep strength on vertical surfaces. It is nevertheless possible to attain thin adhesive joints. Other materials can also be glued with AKEPOX<sup>®</sup> 5010, e.g. plastics (hard PVC, polyester, polystyrene, ABS, polycarbonates), paper, wood, glass and many other materials. AKEPOX<sup>®</sup> 5010 is not suitable for the gluing of polyolefins (polyethylene, polypropylene), silicones, hydrocarbon fluorides (Teflon), soft PVC, soft polyurethane and butyl rubber.

## Instructions for Use:

## A. Product in cans

- 1. Contact surfaces must be thoroughly cleaned and lightly abraded.
- 2. Two parts (by weight or volume) of component A are to be thoroughly mixed with one part of component B until a homogeneous colour is attained.
- 3. A coloration is possible by adding AKEPOX colour pastes up to a maximum of 5 % of the total volume.
- 4. The mixture remains workable for ca. 20 30 minutes at 20° C. After ca. 6 8 hours (20° C) the bonded parts can be transported, after 12 16 hours (20° C) they can bear loads and be tooled. The maximum strength is reached after 7 days (20° C).
- 5. Tools can be cleaned with AKEMI's Nitro Dilution.
- 6. Warmth accelerates and cold retards the hardening process.



## Page 2 of 3

## **Technical Instruction Sheet**

#### B. Cartridge System

- 1. Thoroughly clean and slightly roughen surfaces to be bonded.
- 2. Remove the clasp from the cartridge and put the cartridge in the gun; work the grip until material emerges from both openings; then eventually screw up the mixing nozzle.
- 3. AKEPOX® Colouring Pastes can be added up to max. 5 %.
- 4. The mixture remains workable for approx. 20-30 min (20°C). After 6-8 hours (20°C) the bonded parts may be moved, after 12-16 hours (20°C) approx. they may be further processed. Max. stability after 7 days (20°C).
- 5. Tools can be cleaned with AKEMI Nitro-Dilution.
- 6. The hardening process is accelerated by heat and delayed by cold.

#### **Special Hints:**

- The optimal mechanical and chemical properties can only be attained by adhering to the exact mixing proportions; excess of component A or B has the effect of a plasticizer and can cause discolouration of the marginal area.
- Single-Mix cartridges are not suitable for compressed-air guns or guns with mechanical pistons.
- Use AKEMI Liquid Glove to protect your hands.
- Component A and B should be extracted with separate spatulas.
- The adhesive is no longer to be used of, if it has already thickened or has jellied.
- The product is not to be used at temperatures bellow 10° C because it will then

insufficiently harden.

- At constant temperatures above 50° C the hardened adhesive is inclined to yellow.
- The hardened adhesive can no longer be removed by means of solvents. This can only be achieved mechanically or by applying higher temperatures (> 200° C).
- If the adhesive has been correctly worked it presents no hazard to health when the hardening process is completed.
- The A-component tends slightly to crystallise (honey effect). The product can be made workable again by warming it.
- The stability of the bonding is highly dependent upon the natural stone which is to be bonded.: Silicate-bound stones react better than carbonate-bound stones.

## **Safety Measures:**

see EC Safety Data Sheet

## **Technical Data:**

1. Component A: colour: colourless – slightly yellow, milky

density: ca. 1.17 g/cm<sup>3</sup>

Component B: colour: colourless - slightly yellow, milky

density: ca: 1.13 g/cm<sup>3</sup>

- 2. Working time:
- a) a mixture of 100 g of component A + 50 g of component B

at 10° C: 60 - 70 minutes at 20° C: 20 - 30 minutes at 30° C: 15 - 20 minutes at 40° C: 5 - 10 minutes



## **Technical Instruction Sheet**

Page 3 of 3

## b) at 20° C with varying amounts

```
20 g of component A + 10 g of component B: 35-45 minutes 50 g of component A + 25 g of component B: 25-35 minutes 100 g of component A + 50 g of component B: 20-30 minutes 300 g of component A + 150 g of component B: 15-25 minutes
```

3. The hardening process (Shore D hardness) of a 20 mm layer at 20° C

```
3 hours 4 hours 5 hours 6 hours 7 hours 8 hours 24 hours -- 30 51 67 74 76 81
```

#### 4. Mechanical properties

```
bending strength (DIN 53452): 60 - 70 N/mm² tensile strength (DIN 53455): 30 - 40 N/mm² modulus of elasticity: 2500 - 3000 N/mm²
```

5. Chemical Resistance

| Water absorption DIN 53495   | < 0.5 % |
|------------------------------|---------|
| Sodium Chloride Solution 10% | stable  |
| Salt Water                   | stable  |
| Ammonium 10%                 | stable  |
| Soda Lye 10%                 | stable  |
| Hydrochloric acid 10%        | stable  |

Acetic acid 10% conditionally stable Formic acid 10% conditionally stable

Petrol stable
Diesel oil stable
Lubricating oil stable

6. Shelf life: 1 year approx. if stored in cool place free from frost in its

tightly closed original container.

**Notice:** The above in

The above information is based on the latest stage of technical progress It is to be considered as a non-binding hint and does not release the user from a performance test, since application, processing and environmental influences are beyond our realm of control.

TIS 06.08